中关村NMT联盟“一带一路”全国测试服务网络测试服务信息

4月8日,某研究所将NMT技术应用于钙信号研究,测试样品为小麦,测试指标为Ca2+,在旭月研究院完成实验。| 5月9号,某研究院将NMT技术应用于逆境生理领域,测试样品为黄瓜幼苗,测试指标为NO3-、NH4+,在旭月研究院完成实验。| 6月2号,某研究院将NMT技术应用于逆境胁迫领域,测试样品为棉花苗,测试指标为Ca2+、H+、K+、Na+、IAA,在旭月研究院完成实验。| 6月5号,某研究院将NMT技术应用于植物逆境领域,测试样品为苜蓿,测试指标为K+,在旭月研究院完成实验。| 6月9号,某研究所将NMT技术应用于水稻逆境领域,测试样品为水稻,测试指标为Na+、Ca2+,在中国科学院植物研究所完成实验。| 6月11号,某研究院将NMT技术应用于植物抗逆领域,测试样品为酵母细胞,测试指标为IAA,在旭月研究院完成实验。| 6月16号,某高校将NMT技术应用于昆虫研究,测试样品为昆虫,测试指标为Ca2+、K+,在旭月研究院完成实验。| 6月19号,某研究院将NMT技术应用于植物抗逆领域,测试样品为拟南芥,测试指标为Ca2+,在旭月研究院完成实验。|

植物胞外ATP信号转导通过质膜NADPH氧化酶和Ca2+通道进行传递

上图:胞外的ATP引起了WT的ROS积累,但是rhd2/AtrbohC NADPH氧化酶突变体中没有ROS明显的积累;

下图:胞外ATP增加了拟南芥根部的Ca2+内流,提高了胞质自由Ca2+的浓度。正值代表内流。

 

ATP是一种普遍的胞内能量,也作为胞外信号物质。胞外的ATP调节高等植物的生长和适应性。虽然胞外的ATP能够提高植物胞质中的自由Ca2+,但是这种机制一直不清楚。

英国剑桥大学的科学家使用非损伤微测技术等手段,研究了拟南芥根对胞外ATP的反应,从而揭示了胞外ATP的作用机制。发现胞外的ATP引起了活性氧(ROS)的产生,而质膜NADPH氧化酶AtRBOHC是ROS的主要贡献者。胞外ATP的感受部位在质膜,胞外ATP增加了根部Ca2+的内流,引起了质膜Ca2+的通透性,激活了19-pS通道,增加了AtrbohC NADPH氧化酶的活性。Ca2+的转导位于ATP激活的AtRBOHC的下游,ATP诱导的转录需要AtRBOHC的参与。

这个研究表明高等植物虽然缺少嘌呤受体同源异形体,却演化出了一个截然不同的机制传递质膜上的ATP信号。为我们提供了胞外ATP如何影响植物的生长和适应性的机制,接下来我们可以研究ATP所引起的各种离子流的改变与植物生长发育的关系,非损伤微测技术是研究活体材料离子流的最佳工具。

 

关键词:ATP,Ca2+,通道(Channel),MAP激酶,活性氧(ROS)

参考文献:Demidchik V et al. The Plant Journal, 2009, 58: 903–913.

 

PDF版及更多参考文献请点击这里