中关村NMT联盟“一带一路”全国测试服务网络测试服务信息

4月8日,某研究所将NMT技术应用于钙信号研究,测试样品为小麦,测试指标为Ca2+,在旭月研究院完成实验。| 5月9号,某研究院将NMT技术应用于逆境生理领域,测试样品为黄瓜幼苗,测试指标为NO3-、NH4+,在旭月研究院完成实验。| 6月2号,某研究院将NMT技术应用于逆境胁迫领域,测试样品为棉花苗,测试指标为Ca2+、H+、K+、Na+、IAA,在旭月研究院完成实验。| 6月5号,某研究院将NMT技术应用于植物逆境领域,测试样品为苜蓿,测试指标为K+,在旭月研究院完成实验。| 6月9号,某研究所将NMT技术应用于水稻逆境领域,测试样品为水稻,测试指标为Na+、Ca2+,在中国科学院植物研究所完成实验。| 6月11号,某研究院将NMT技术应用于植物抗逆领域,测试样品为酵母细胞,测试指标为IAA,在旭月研究院完成实验。| 6月16号,某高校将NMT技术应用于昆虫研究,测试样品为昆虫,测试指标为Ca2+、K+,在旭月研究院完成实验。| 6月19号,某研究院将NMT技术应用于植物抗逆领域,测试样品为拟南芥,测试指标为Ca2+,在旭月研究院完成实验。|

Medaka鱼线粒体富集细胞铵依赖型的钠吸收

图注1:Medaka皮肤H+、Na+、NH4+的变化;
图注2:Medaka皮肤MRCs中“NH

4+-依赖型Na+吸收”的示意图。

 

斑马鱼是离子转运和发育研究的模式动物,但是它是狭盐类鱼,而medaka是广盐类鱼,是另一种可提供全面生物学信息的鱼类模式动物。

1983年,曾有科学家研究淡水鱼的Na+/Cl-的吸收时,发现鱼腮中Na+和NH4+发生了交换。从那时开始,许多研究都针对Na+吸收和NH4+外排机制开展起来。但是,经过了长时间的争论,仍然存在不一致的结论。

2010年,中国台湾的科学家使用“非损伤微测技术”对medaka鱼皮肤表面线粒体富集细胞(MRCs)的H+、Na+和NH4+的流速进行了测定,发现Na+/H+交换器(NHE)与Na+和NH3/NH4+的转运相关。提高胞外NH4+的浓度可显著抑制NH3/NH4+的分泌和Na+的吸收。相反,提高溶液的酸性(pH7到pH6)可增强细胞对NH3/NH4+的吸收和Na+的分泌。该研究还通过原位杂交和荧光定量PCR的方法得知,Medaka鱼线粒体富集细胞在低Na+环境中,Na+/H+转换器mRNA基因(slc9a3)和恒河猴糖蛋白的基因(Rhcg1andRhb)表达减少。研究表明,MRCs细胞顶端膜存在一种新型的Na+/NH4+转换通路,NHE和Rh糖蛋白共同参与其中,Rh糖蛋白可能通过产生跨MRCs顶端膜的H+梯度来驱动NHE。

非损伤微测技术得到的结果为这个研究提供了直接和有说服力的证据,Na+的吸收与NH3/NH4+的外排是通过淡水鱼的MRCs实现,也说明了与斑马鱼通过HRCs细胞对Na+的吸收作用机制不同。

 

关键词:Na+/H+交换器(Na+/H+ exchanger),渗透调节(osmoregulation),腮(gills),离子转运细胞(ionocytes)

参考文献:Wu SC, et al. Am J Physiol Cell Physiol 2010,298: C237-C250

 

PDF版及更多参考文献请点击这里